

Characterization and XAFS

Kiyotataka Asakura

(2018.Nov.22)

• Materials are illuminated by probe(light, electron, neutron, muon, He, ion and sharp tip)

201

3

How to characterize the Catalysts

What we would like to obtain Quality, Quantity and State and structure Analysis Method Imaging, Spectroscopy and Diffraction Temporal and Static

Operando and in situ

Characterization techniques

NMR	Nuclear Magnetic Resonance	Nuclear spin	Structure	
ESR	Electron Magnetic Resonance	Electron spin	Structure	
IR	Infrared	Vibration	Adsobate	
RAMAN	Raman scattering	Vibration	Structure	
UV-VIS	Ultraviolet and visible absorption	Electron absorption	Electronic state	
XPS	X-ray photoelectron spectroscopy	Photoelectron mission	Electronic State	
XRD	X-ray diffraction	Diffraction	Structure	
XSAS	X-ray small angle scattering	Scattering	Long range order	
XAFS	X-ray absorption fine structure	X-ray absorption	Local structure	
Mössbauer		Gamma-ray absorption	Electronic state	
TEM	Transmission electron microscopy	Electron	Morphology	
SPM	Scanning probe microscopy	Probe tip	Morphology	
EPMA	Electron probe microanalysis	Fluorescent x-ray	Local composition	
XRF	X-ray fluorescence	Fluorescent X-ray	Composition	
PEEM	Photoemission electron microscopy	Photoemission	WF	
ND	Neutron Diffraction	Diffraction Structure		

Characterization techniques

NMR	Nuclear Magnetic Resonance	Nuclear spin	Structure	
ESR	Electron Magnetic Resonance	Electron spin	Structure	
IR	Infrared	Vibration	Adsobate	
RAMAN	Raman scattering	Vibration	Structure	
UV-VIS	Ultraviolet and visible absorption	Electron absorption	Electronic state	
XPS	X-ray photoelectron spectroscopy	Photoelectron mission	Electronic State	
XRD	X-ray diffraction	Diffraction	Structure	
XSAS	X-ray small angle scattering	Scattering	Long range order	
XAFS	X-ray absorption fine structure	X-ray absorption	Local structure	
Mössbauer		Gamma-ray absorption	Electronic state	
TEM	Transmission electron microscopy	Electron	Morphology	
SPM	Scanning probe microscopy	Probe tip	Morphology	
EPMA	Electron probe microanalysis	Fluorescent x-ray	Local composition	
XRF	X-ray fluorescence	Fluorescent X-ray	Composition	
PEEM	Photoemission electron microscopy	Photoemission	WF	
ND	Neutron Diffraction	Diffraction	Structure	

Surface Sensitive

Inelastic Mean Free Path of electron

- The initial kinetic energy of the electron.
- The nature of the solid.

X-ray photoelectron spectroscopy(XPS)

- Elemental analysis, electronic structure

• Non-destructive, Surface sensitive

UHV is necessary. Recently ambient pressure XPS is available

A scheme of XPS

XPS gives

Binding energy

 Element analysis and chemical state

$$E_{k}^{vacuum} = hv - E_{b} - \phi$$

at vacuum level

Mo-Te-V-Nb Oxide

Increase the oxygen concentration in order of A,B, and C

XPS results on surface concentration composition and ammoxidation

Peak deconvolutions

The binding energy depends on the valence state.

Fig. 7 K.Asakura et al.

High pressure XPS

FIG. 11. Fitting results of *in situ* C 1s spectra ($h\nu$ =1486.6 eV, ϑ =0°) at different CO pressures from 5×10^{-8} mbar to 1 mbar. (a) Data from Fig. 5 after normalization and subtraction of a Shirley background; (b) fit of the data for p=1 mbar; (c) fit of the data for p=5×10⁻⁸ mbar (see the text for details).

FIG. 2. Schematic cut through the analysis chamber of the XPS apparatus with aperture system. The sample stage and the first two pumping stages are indicated by the pressures p_0 , p_1 , and p_2 . (1) Electron energy analyzer lens, (2) aluminum window of the x-ray source, (3) sample holder, (4) dosing system for beam pressures.

Detector Differential pumping Pantforder, J. RSI 76 014102 2005

XPS from interface with liquid

12

T. Masuda, H. Yoshikawa, H. Noguchi, T. Kawasaki, M. Kobata, K. KobayashiandK. Uosaki, *Applied Physics Letters* 2013, 103, 111605.

TEM (Transmission Electron Microscopy)

Information

- Atomic level structure and morphology
- Composition analysis by Analysis TEM
- Disadvantage
 - Sample damage
 - Sample size and thickness

A scheme of Transmission Electron Microscopy

Scattered and diffracted beams are imaged

Optical microscopy TEM

Particle size and morphology

Particle size distribution

TEM and STEM

Analysis STEM

Fluorescence X-ray elemental analysis

HAADF(High angle annular dark field) Large Z scatter the electron to a higher angle. More electron on ADFdetector

EELS(eletron energy loss spectroscopoy) --elemental and chemical state analysis

HAADF STEM of MoVTeO6

1 Z. Wei, T. Annette, S. RobertandS. Dangsheng, Angewandte Chemie International Edition 2010, 49, 6084.

2013 AGS

A TEM image of Au-Ir deposited on TiO₂

A TEM image of Au-Ir deposited on TiO_2 (a) and corresponding EDS spectra obtained from each area indicated in the TEM image (b).

Tomoki Akita et al., Journal of Electron Microscopy 52(2): 119–124 (2003)

Au/CeO2 during electron irradiation.

HOKKAIDO UNIVERSITY

Ambient TEM

A few mbar

J. F. Creemer, S. Helveg, G. H. Hoveling, S. Ullmann, A. M. Molenbroek, P. M. SarroandH. W. Zandbergen, *Ultramicroscopy* 2008, 108, 993.

H2

Fig. 1. In situ TEM images (A, C, and E) of a Cu/ZnO catalyst in various gas environments together with the corresponding Wulff constructions of the Cu nanocrystals (B, D, and F). (A) The image was recorded at a pressure of 1.5 mbar of H₂ at 220°C. The electron beam is parallel to the [011] zone axis of copper. (C) Obtained in a gas mixture of H₂ and H₂O, H₂: H₂O = 3:1 at a total pressure of 1.5 mbar at 220°C. (E) Obtained in a gas mixture of H₂ (95%) and CO (5%) at a total pressure of 5 mbar at 220°C.

H2+CO

H2+H2O

а

HOKKAIDO UNIVERSITY

Contents

Spectroscopy: Solid State NMR, IR, RAMAN, XPS.

imaging Principle of SEM, Analysis SEM and TEM STM and PEEM.

Diffraction XRD,TED and LEED Diffraction is a backside of Imaging.

Diffraction

Diffraction is a interference of waves in the same direction

XRD=X-ray diffraction

crystalline

XRD gives crystalline forms

Particle size

$$L = K\lambda / \Delta(2\theta) \cos \theta_B$$

Scherrerの式 L:crystaline size, K=0.89-1.39 $\Delta(2\theta)_{\text{half width}}$ λ 波長 Pt particle size = 6.4 nmInoue, T.; J. Catal. 1997, 171, 457-466. Pt(111) a) Pt/SbOx 0.5wt% 773 K ox. **Bragg角** HOKKAIDO UNIVERSITY

Scattering of electron and interference

XAFS gives you bond distance and coordination number

The EXAFS equation

Sample is not necessarily in a crystalline form. Solution, Surface, amorphous, and so on.

In the presence of gas phase, we can measure XAFS.

Catalyst in practice

Automobile catalysts

ceramic monolith washcoat

mesoporic washcoat particles

Supported metal catalysts Industrial practical catalysts

Metal nanoparticles are dispersed on the metal oxide surfaces in order to obtain high surface area.

Metal morphology, structure and electronic states are moified by the interaction from oxie supports

HOKKAIDO UNIVERSITY

Diffraction techniques are not unavailable

Because no crystalline structure is present on the surface, diffraction techniques become difficult to be applied.

How to obtain the supported metal catalysts.

Supported nano Gold catalsyts

High activity for CO oxidation at room temperature when it is in nanosize

What is the real structure of catalyst species? What is the structure during the reaction? Is it the same as that in its initial state?

Answer is no!!

- Catalysts are always changing.

Figure 2. Chamber for the EXAFS measurements under vacuum and at high pressures.

High pressure cell J.Phys. Chem.93,4213(1989)

X-ray absorption, Principles, applications, techniques of EXAFS, SEXAFS, and XANES, New York, John Wiley & Sons, 1988.

Reaction das inlet

Thermocouple_

Water Pipe for cooling

Kapton window

X-ray In

Vacuum Guar

Lig. N2 Dewar

X-ray out

Output valve

J.Synchro.Rad.8, 581(2001).

J.Chem.Phys. 70 (1979) 4849.

In-situ work

Structure change during the reduction processes

Flow rate :20 % H₂/Ar 100ml/min Temperature rate: 7K/min

XANES : Oxidized Rh species \rightarrow Rh metal EXAFS : Rh-O \rightarrow Rh-Rh

K. Bando et al. in-situ high temperature XAFS DO UNIVERSITY

It removes sulfur compounds from fossil fuel. Reactions are conducted under high pressure condition in the presenc of oil.

Metal phosphides

More active than commercially avaiable NiMoS

X-ray is strongly absorbed by oil

Sample and X-ray windows should be located closeby.

EXAFS of Ni₂P in the presence of Oil

ACHYORKA AND CUMP VERSITY

Diagram of conventional XAFS technique

Questions and how?

Is NiPS really active site? What is the reaction path?

Combination of IR, product analysis and QXAFS

Difference spectra in HDS – before reaction

• Little reaction temperature dependence

XANES change during 513 K

XANES peak change corresponding to the formation of Ni-S

Thiophene introduction 0.14 10 0.12 around 2950 cm⁻¹ IR peak intensity 0.10 0.10 E 0.08 J **XAFS** estimated 60.0 0.02 0.00 Z 0 20 80 0 100 40 60 t/min

FT-IR of the adsorbed species

No

tetrahydrothiophe ne adsorption is detected soon after the HDS reaction starts.

A few ten min after the reaction it starts to grow and is saturated.

FT-IR and XANES

Ni-S bond forms then THT is formed. Soon after the formation of THT is decomposed to H_2S and

Time resolved --- in-situ QXAFS in BL9C

PF 9C QXAFS beam line ->order of **10** s per spectrum.

[1] M. Nomura, K. Asakura et al., AIP Conference Proceedings 2007, 882, 896.

Supported by Grand-in-Aid for Scientific Research S(16106010) from JSPS.

Time-resolved EXAFS

- 1. [Ru₆C]/MgO catalysts during CO insertion reactions
- A. Suzuki, et al., J. Phys. Chem. B 2004, 108, 5609.
- 2. Rh/AI_2O_3 CO induced Rh cluster destruction
- A. Suzuki, et al., Angev. Chem. 2003, 42, 4795.

Diagram of energy dispersive XAFS(DXAFS) technique

Disruption of Rh clusters on Al2O3 surface by CO at RT

EXAFS Parameter Values for the 0.57 wt % Rh/\gamma-Al₂O₃ Catalyst after Reduction and CO Admission^a

	coordination								
		Rh-Rh		Rh–O			Rh–CO		
treatment	N	R (Å)	$\Delta\sigma^2 \times 10^2 (\text{\AA}^2)$	N	R (Å)	$\Delta \sigma^2 \times 10^2 (\text{\AA}^2)$	N	R (Å)	$\Delta \sigma^2 \times 10^2 (\text{\AA}^2)$
reduction at 593 K reduction at 593 K, evacuation at 593 K, CO admission at 298 K	3.7	2.68	0.5	1.9 3.1	2.74 2.12	0.0 0.3	1.8		0.7

^aAccuracies: N, $\pm 15\%$; R, $\pm 1\%$; $\Delta\sigma^2$, $\pm 15\%$.

H.F.J.van't Bilk, J.B.A.D.van Zon, T.Huizinga, J.C.Vis, D.C.Koningsberger, and R.Prins, J.Am.Chem.Soc., 107 (1985) 3139.

A series of k^3 -weighted EXAFS Fourier transformed functions at the Rh K-edge during the disintegration of Rh clusters on Al_2O_3 under CO(26.7 kPa)

The k³-weighted EXAFS Fourier transformed functions for Rh/Al_2O_3 under CO (26.7 kPa) at 298 K measured by DXAFS together with the curve fittings of the observed FT data and their imaginary parts

The values of coordination number (CN) and bond distance (R) determined by the curve fitting as a function of CO exposure time

HOKKAIDO UNIVERSITY

Illustrative mechanism and time scale at 298 K for the disintegration of Rh clusters on Al_2O_3 during CO adsorption by time-resolved DXAFS

Metal – support interaction

Support - maintaining a highly dispersed state It might show catalytic activitivty forming a bifunctional catalysis. It affects the metal activity through metal support interaction. Metal support interaction plays important roles in the catalyst.

- It stabilizes the small particle size.
- It modifies the electronic state.
- It modifies shape and geometry of metal particles.

But there is no clear identification of the metal-support interaction. In the conventional catalyst, EXAFS from metal-support interaction is hidden by strong framework EXAFS.